
Rational Design of Orthogonal Libraries of Protein Coding Genes
Daniel Ryan† and Dimitris Papamichail*,‡

†National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, United States
‡Computer Science Department, University of Miami, Coral Gables, Florida 33146, United States

ABSTRACT: Array-based oligonucleotide synthesis technol-
ogies provide access to thousands of custom-designed
sequence variants at low cost. Large-scale synthesis and high-
throughput assays have become valuable experimental tools to
study in detail the interplay between sequence and function.
We have developed a methodology and corresponding
algorithms for the design of diverse protein coding gene
libraries, to exploit the potential of multiplex synthesis and
help elucidate the effects of codon utilization and other factors
in gene expression. Using our algorithm, we have computa-
tionally designed gene libraries with hundreds to thousands of orthogonal codon usage variants, uniformly exploring the design
space of codon utilization, while demanding only a small fraction of the synthesis cost that would be required if these variants
were synthesized independently.

KEYWORDS:

The emerging field of synthetic biology moves beyond
conventional genetic manipulation to construct novel

genes, cells, and eventually life forms that do not originate in
nature. To achieve this goal, it utilizes large-scale DNA
synthesis, DNA sequencing, and design and assembly of
building blocks for biological system engineering. DNA
synthesis and sequencing have enjoyed enormous advances in
the past decade, with orders of magnitude improvements in
both speed and cost.1,2 It is worth noting that the cost of
synthesizing a 2,500-bp long DNA sequence today, coding for
an average sized protein, is less than $1000, and newly explored
microarray-based synthesis techniques promise to reduce the
cost of DNA synthesis to a fraction of a cent per base.3

However, the ability to rationally design genes, enzymes, and
pathways has not kept pace, to a large extent due to the
inherent complexity of biological systems. Algorithmically
driven methods can be employed to design the next generation
of large-scale experiments, which will quantitatively characterize
biological components and bridge the large gap of knowledge
between sequence and function, enabling the rational engineer-
ing of genomic sequences.
Traditionally, due to the complexity of designing protein

coding genes with well controlled attributes and the large gap
of knowledge on the effect of these attributes, large-scale gene
design experiments have relied on random synonymous
mutations to generate the gene libraries that are then studied
in well characterized organisms and regulatory contexts. Welsh
et al.4 have performed experiments with genes encoding
commercially valuable proteins, by synthesizing 72 variants and
chimeric combinations. They showed that variation in
expression is highly correlated to codon usage, although
preferred codons were not those used most frequently by E.
coli, the organism where the genes were expressed. In particular,

they pinpointed 5−6 codons as most critical for expression. In
contrast, a paper from the Plotkin lab5 claimed that most of the
variance in expression results from the amount of secondary
structure in the 5′ end of the gene, after testing 154 variants of
the GFP protein, carrying random synonymous mutations, also
in E. coli. Further analysis of Plotkin’s data set by Supec and
Mac,6 using support vector machines and a M5′ regression tree
model, identified 5 specific codons from 4 amino acids to
contribute almost all of the variation in expression levels
attributable to codon usage. These codons were different than
the ones identified by Welsh et al. Additional findings from the
Plotkin lab7 indicate complex relationships between codon
selection, translation initiation and elongation, misfolding of
proteins, and autocorrelation.
These results beg the question: which rules should one

follow to design genes for optimized gene expression?
Currently it is hard to tell, even in a well studied model
organism such as E. coli. A common belief, emphasized by
Plotkin’s group in ref 5 and by Super and Mac in ref 6, is that
the mechanisms that determine gene expression can be
established only by further large-scale experimentation. In this
paper we present algorithms that allow the design of synthetic
gene libraries on the scale and diversity necessary to address the
needs of high-throughput in vitro experimentation.

Combinatorial Gene Libraries. Gene synthesis is the
process during which oligonucleotides (oligos) are combined
into larger DNA fragments, several hundred or thousand bases
in length. Numerous protocols have been developed for

Special Issue: IWBDA 2012

Received: September 16, 2012
Published: February 27, 2013

Research Article

pubs.acs.org/synthbio

© 2013 American Chemical Society 237 dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244

pubs.acs.org/synthbio

performing gene synthesis, three being most representative: the
polymerase chain assembly (PCA),8 ligase chain reaction
(LCR),9,10 and thermodynamically balanced inside out syn-
thesis (TBIO).11 In 2009, Gibson et al. published a paper
describing a new technique for DNA assembly,12 which is since
commonly referred to as in vitro isothermal assembly or Gibson
isothermal assembly. This technique is capable of simultaneously
assembling large batches of overlapping DNA fragments,
resulting in assemblies of size up to the mega-base level. Each
assembly stage comprises a single isothermal reaction, but for
large assemblies multiple stages are required. This technique
was used to assemble an entire 16.3 kilo-base mouse
mitochondrial genome from 600 overlapping 60-mers using 3
assembly stages.13 Later, an entire 1.08 mega-base Mycoplasma
genitalium genome was assembled from approximately 1000
cassettes of 1-kilo-base each, using 3 assembly stages.14

There are several advantages of the in vitro isothermal
assembly over other methods, such as being largely sequence-
independent, fast, and mostly labor-free. In ref 15 the in vitro
isothermal assembly was used to create a combinatorial library
of biochemical pathways. This synthetic library, containing 144
combinations of 3 promoters and 4 gene variants of the acetate
utilization pathway in E. coli, was introduced into an E. coli
mutant, and a high percentage (81%) of the colonies screened
contained the complete functional pathway. This feat
demonstrates the effective use of assembly methods to
accurately and efficiently construct combinatorial libraries
and, more importantly, rationally designed sets. These same
techniques that were used to construct combinatorial pathways
can also be used to synthesize libraries of gene variants. Using
any assembly protocol, there are cost-effective ways to create a
very large number of systematically varied versions of specified
genes, pathways, or even genomes, by combining oligos with
carefully chosen attributes, such as varied codon or codon pair
distributions. Systematically varied data sets have the potential
to enable experimental and statistical inquiries into the
correlations between deciding characteristics, such as codon
usage, codon context and secondary structure, and determinant
features, such as gene expression, degradation, and function.

■ RESULTS AND DISCUSSION
Our goal is to develop a method that minimizes the number of
DNA sequence oligos required to construct libraries of gene
variants, by allowing the constructs to share common oligos.
Let us examine a gene that can be assembled by putting
together 10 overlapping DNA oligos. If we define as 1x
coverage the total worth of sequence required to synthesize one
gene variant (which consists of a larger number of base pairs
than the length of the gene due to the overlapping regions),
one can observe that 2x coverage is sufficient to synthesize
1024 gene variants, as depicted in Figure 1, where all

neighboring oligos share overlapping regions. In such a design,
we have 2 variations for each of the 10 oligos, with one
maximizing the target codon’s occurrences, and the other
minimizing it; in Figure 1 these are depicted as light and dark
colored oligos, respectively. Below the oligo design, we use a
graph model to depict the oligo connectivity by overlap sharing,
where white nodes indicate internal oligo regions, black nodes
indicate overlaps, and edges connect nodes (regions) that
belong to the same oligo.
Such a methodology though will not produce all unique

designs from a codon frequency perspective, since the codon
frequency values follow a binomial distribution, as shown in
Figure 2 (from a real example of a 10-oligo synthesizable gene,

varying the codon usage of an amino acid that appears in 30
locations throughout the coding sequence). Out of 1024 gene
variants, one contains the maximum number of occurrences of
the target codon and another one the minimum, with the vast
majority of constructs clustered midway. In most experiments
today, this effect is undesirable, independently of the high-
throughput methodology used to assay the properties of the
gene variants, since there always exist limits in the number of
sequences that can be realistically sampled and tested, thus
restricting the scope of the experiment with respect to codon
frequency modulation or any other desirable varied measure.
Our algorithm, for each codon whose frequency we intend to

alter, examines consecutive DNA oligos to identify groups
(intervals) containing enough corresponding amino acids to
allow a ‘step’ between the frequency levels we wish to examine.
As an example, assuming that we would like to create constructs
that vary the usage of a particular codon, call it ‘C’, according to
the frequencies (0.05, 0.30, 0.55, 0.80), we would identify
consecutive oligos containing at least 25% (the step) of the
corresponding amino acid’s (call it ‘A’) occurrences in the gene.
Then the algorithm identifies disjoint groups of consecutive

Figure 1. Combinatorial design of library that varies single codon usage and utilizes two variant oligos per position. All neighboring oligos share
overlaps. The graph representation uses white nodes for internal oligo regions and black nodes for overlaps. Edges connect nodes (regions) that are
part of the same oligo.

Figure 2. Binomial single codon usage distribution of gene variants of
naive 10-oligo library design.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244238

oligos that, when combined, can produce the desired
constructs, each with a unique frequency of the codon under
consideration. An example of a design that can be used to
construct gene variants utilizing a codon at 4 frequencies,
differing by 25%, is shown in Figure 3, where interval (1,2)
contains at least 25% and interval (5,8) at least 50% of amino
acid A. The problem as described reduces to prime factorization
of the number of target codon frequencies and construction of
intervals with minimized sum of lengths, which is similar to the
Frobenius coin problem,16 but with bounded coefficients. An
example varying the occurrences of two codons, with a second
codon whose amino acid ‘B’ appears at least 50% in interval
(1,3) and at least 25% in interval (8,9) is shown in Figure 4. In
this example we can see that, instead of ordering 160 oligos to
assemble the 16 desired gene variants, 24 oligos suffice, with 24
being also the minimum number to realize the design.
We have investigated the problem of minimizing the number

of genomic oligos needed to synthesize a library of gene
variants, all coding for the same amino acid sequence, but each
having a unique codon distribution. For example, assuming the
aim is to test the contributions of a specific codon to the
expression of the gene, one can alter the frequency of the
codon in the mRNA encoding. For testing 4 different frequency
levels (such as low, medium low, medium high, and high) of
the usage of a codon, 4 designs would be needed, each utilizing
the codon at one of the 4 levels. For examining the effects of 5
different codons at 4 levels each, one would need to synthesize
1024 (45) different genes, to account for all possible
combinations. The number of individual gene variants increases
exponentially with the number of codons that we wish to
investigate, as does the cost of synthesizing all of the different
genes.
Problem Formulation and Notation. DNA synthesis is

performed by assembling synthesized oligos, with typical
lengths ranging from 50 to 400 base pairs. These oligos share
common overlapping regions at their ends, ranging typically in

length from 15 to 80 base pairs. For our problem, we are trying
to minimize the number of oligos that are used to create a
library of protein coding gene variants, such that each variant is
uniquely representing a combination of selected codon
frequencies.
More specifically, the input of our problem is the following:
1. An amino acid sequence A1, A2, ..., Am, with m amino acids.
2. The number of DNA base pairs (bp) per synthesized oligo

l and the desired size of the overlaps between oligos v.
3. A list of amino acids (the “amino acids of interest”), a1, ...,

ak, and corresponding codons (the “codons of interest”), c1, ...,
ck that will have their frequencies systematically varied.
4. For each codon of interest ci: a minimum frequency mini, a

maximum frequency maxi, and total number of desired
frequencies ni (which will be equally spaced between the min
and max values).
To put these definitions in perspective, let us consider an

example, where we want to design a library of the jellyfish
Green Fluorescent Protein (GFP) gene, with a length of m =
238 amino acids. Setting the values l = 90 and v = 18, for the
oligo and overlap lengths, respectively, would require the use of
N = 10 oligos in order to assemble one single variant of the
gene, of length 714 bp. If we want to study the effect of the
codons c1 = ‘CTA’, coding for amino acid a1 = ‘S’ (serine), and
c2 = ‘ACC’, coding for amino acid a2 = ‘T’ (threonine), we
could vary the frequencies of the two codons at 4 different
equidistant values, with mini = 0.05(5%), maxi = 0.80(80%),
and ni = 4, i ∈ (1,2), which would require the synthesis of 16
different gene variants, for all combinations of the (0.05, 0.30,
0.55, 0.80) frequencies of the two codons.
We will use the term coverage to indicate the amount of

sequence necessary to synthesize the gene variants. We define
as 1x coverage as the amount of DNA sequence necessary to
synthesize one gene variant. In the example above, 1x coverage
for GFP would be 900 base pairs, since 10 overlapping oligos of
90 bp each are necessary to assemble one variant of the gene.

Figure 3. Single codon usage variation in GFP, 4 codon frequency values, 4 gene variants. In the graph representation, the variants are depicted as
paths from the left-most to the right-most node.

Figure 4. Two codon usage variation in GFP, 4 frequency values per codon, 16 gene variants.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244239

The problem has been presented in terms of a single codon
being systematically varied per amino acid of interest; however,
since the sum of all codon frequencies for any amino acid must
be 1, a single codon’s frequency cannot be varied in isolation. A
simple way to specify the frequencies for an amino acid’s
remaining codons is to assume a fixed relative frequency
between all codons other than the codon of interest (e.g., use
either the original gene distribution or target host codon
distribution). The algorithm presented herein is capable of
handling a more general situation than this, where the
occurrences of all codons for an amino acid of interest are
either increasing or decreasing by a specified frequency step size
(or remain fixed), such that the sum of their frequencies
remains one. Using Proline as an example, let c1, c2, c3, and c4
denote its four codons and let n = 3. We could specify three
frequency levels for c1, for example, (0.1,0.4,0.7), and in
addition allow all remaining codons to have equal relative
frequencies to each other, resulting in frequencies ((0.1, 0.3,
0.3, 0.3), (0.4, 0.2, 0.2, 0.2), (0.7, 0.1, 0.1, 0.1)) for (c1, c2, c3,
c4). Alternatively, we could specify a starting frequency
distribution of (0.1, 0, 0.7, 0.2) for (c1,c2,c3,c4) and let c1’s
frequency increase by 0.2, c2’s by 0.1, c3’s frequency decrease by
0.3, and c4 remain fixed between each of the three levels,
resulting in frequencies ((0.1, 0, 0.7, 0.2), (0.3, 0.1, 0.4, 0.2),
(0.5, 0.2, 0.1, 0.2)). Specifying a fixed relative frequency
between the remaining codons is actually a special case of the
second method, where all remaining codon frequencies are
changing in the opposite direction of the single codon of
interest. We present the algorithm in terms of a single codon
per amino acid of interest to keep the notation simpler and not
confuse matters more than necessary. Implementing the more
general case requires applying the allocation algorithm
described for the single codon of interest case to a virtual
codon, with step size between frequencies equal to the sum of
all increasing codons’ step size.
We will refer to the desired equally spaced frequencies for

each amino acid of interest as the design space for that amino
acid. When we discuss the design space without mentioning
one particular amino acid, we will imply all possible
combinations arising from choosing one point from the design
space of each amino acid of interest. We can view the design
space of each amino acid ai as a subset of ni equally spaced
points in [0,1] and the general design space as an equally
spaced grid of points in [0,1]k consisting of ∏i = 1

k ni points in
total.
Let Δi denote the space between two points of the design

space of the amino acid ai. This can easily be computed from
the minimum, maximum, and number of points in the design
space for the amino acid:

Δ =
−
−n

max min
1i

i i

i

We can view the design space for amino acid ai as a vector of ni
points:

⟨ + Δ + Δ + − Δ ⟩nmin , min , min 2 , ..., min (1)i i i i i i i
(1)

In our previous example, both amino acids a1 and a2 have a Δ
of 0.25.
The precise problem would be defined as: Given the user

inputs 1−4 above, find and specify the minimal number of
oligos that will yield uniquely the gene variations in the design
space defined by the input, when assembled in every

combination of possible overlaps. It is expected that the
resulting library will cover the design space uniformly when
assembled via a method such as Gibson isothermal assembly,
assuming annealing of all overlaps is equally likely.
One final note before describing the algorithm for solving

this problem: the design space refers to an overall codon usage
profile and thus is completely “non-local” in nature. This
implies that any two amino acid sequences with the same
codon usage profile will be considered the same gene design
within this framework. This assumption is supported by
experimental results that have indicated that codon usage
affects translation rates in a linear aggregate fashion.17 The
same is true for codon pair usage,18 which is another protein
coding mRNA feature that can be assayed using synthetic
libraries designed with the methodologies described in this
paper. It has been shown though that codon usage alone cannot
account for all of the variation seen in gene or protein
expression levels.7 Other mechanisms known to affect
expression are mRNA secondary structure (especially near
the 5′ end),5 codon pair bias,18 and Shine-Dalgarno
sequences.19 Secondary structure at the 5′ end of the gene
can be preserved with minimal interference to the overall
designs, since structures that significantly affect expression
levels are local and located within the initial 40−60 nucleotides
of the coding region, therefore affecting only the first oligo of a
synthetic design. By disallowing modifications in this oligo, we
preserve the original local secondary structures, minimally
affecting library construction. Shine-Dalgarno binding sites
occur infrequently, once every 4096 nucleotides by chance.
Even in a large library of designs, such sites will rarely appear
and can be altered or preserved with minimal or no impact to
the codon distribution. Codon pair bias is another factor that
should be accounted for. Although it is difficult to alter codon
usage without affecting codon pair bias, in practice it is not
expected that libraries that do not specifically alter the codon
pairs toward any particular end would generate significantly
codon pair biased designs.

Green Fluorescent Protein Coding Libraries. To
demonstrate the optimization potential of our algorithm, we
experimented in-silico with library designs involving the jellyfish
GFP protein, which has a length of 238 amino acids. We set the
oligo size to 90 bp and the overlap length to 18 bp, with 10
overlapping oligos covering the whole coding sequence, values
compatible with current synthesis and assembling technologies.
Our initial designs involved 3 amino acids, threonine (T),
valine (V), and glutamic acid (E). We varied a single codon of
threonine and valine at 4 frequencies, (0.1, 0.35, 0.60, 0.85) and
glutamic acid at 6 frequencies (0.1, 0.25, 0.4, 0.55, 0.7, 0.85).
This library would require the synthesis of 96 individual gene
variants if each was synthesized independently. Our algorithm
generated a multiplex library with 3.8x coverage, requiring the
synthesis of 25 times fewer oligos. The design is shown in
Table 1, where the graph depicting the oligo overlaps is
displayed in Figure 5.
Expanding the range of frequency values for all 3 codons, by

reducing the minimum frequency from 10% to 5%, and
increasing the maximum from 85% to 90%, while preserving the
values of all other parameters, produces a library design that
requires 7.8x coverage to be synthesized. This library realizes
savings in excess of 12-fold over the individual gene variant
design. Interestingly, limiting the frequency range by decreasing
the maximum codon frequency from 85% to 70%, while
keeping the minimum frequency at 10%, leads to a design with

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244240

a required coverage of 3.5x, thus achieving only marginally
better savings.
Next we consider the realistic case involving the 4 codons

and their corresponding amino acids (S, T, V, A) that Supek
and Muc6 identified as contributing most of the variation in
expression in Plotkin’s5 experiments. Varying the occurrences
of each codon at 4 frequency levels (0.05, 0.30, 0.55, 0.80)
would require synthesizing a library of 256 gene variants, in
order to quantify the effect of these codons in the expression of
a gene. Our algorithm produces the multiplex design depicted
in Table 2.
This particular library design can be synthesized with 5.2x

coverage, for which we only need to order 2% as much
sequence as we would for the 256 separate gene variants,
reducing the synthesis cost of such an experiment from $70,000
to about $1,500 (based on 2012 synthesis costs), including a
modest cost of labor and material necessary to assemble the
oligos.
Similarly, varying single codon frequencies of 8 amino acids

(P, T, V, E, D, G, Q, K) in the GFP protein encoding at (0.1,
0.3, 0.5, 0.7) and with all other parameters remaining the same
requires in a library with 65,536x coverage to be synthesized
when no optimization is applied, where our algorithm allows
the exploration of the same design space with only 12x
coverage or in other words achieves in excess of 5000-fold
savings. The resulting design is displayed in Table 3.
Polio Virus Capsid Protein Coding Libraries. We

evaluated our algorithm performance against another protein
coding gene, significantly larger than GFP, that codes for the P1
capsid protein of Polio virus. The RNA encoding of the gene
has a length of 2643 bases, and several computer generated
designs of this gene have been synthesized and evaluated in
studies that aimed to characterize codon and codon pair
distribution effects in gene expression.17,18 We randomly
selected four amino acids, isoleusine (I), asparagine (N),

proline (P), and threonine (T), and varied their codon
frequencies. We set the oligo and overlap lengths to the same
values as the GFP experiments, 90 bp and 18 bp, respectively.
In the case of the P1 protein, 37 overlapping oligos are
necessary to synthesize a single variant.
We performed four experiments, varying the range and steps

of the four codon frequencies, using the same frequency pattern
for all codons in each experiment:
(0,0.2, 0.4, 0.6, 0.8, 1)
(0.05, 0.23, 0.41, 0.59, 0.77, 0.95)
(0.1, 0.26, 0.42, 0.58, 0.074, 0.9)
(0.05, 0.35, 0.65, 0.95)
The resulting library designs are shown in Tables 4, 5, 6, and

7. If these libraries were constructed with independent
synthesis of each gene variant, they would require 1296x
coverage, which is equivalent to the synthesis of 47,952 oligos
of 90 bp length, when sampling the four codons at six different
frequency values. Libraries which sample the codons at four
frequency values each would require 256x coverage, or
equivalently 9,472 oligos.

Table 1. GFP Design with 10 Overlapping Oligos, Varying 3
Codons (of Amino Acids T, V, and E) at 4 Frequency Levels
for T and V and Six Frequency Levels for Ea

AA fragments utilized Design

T [(1, 2), (7, 9)] {⟨0, 2⟩, ⟨0, 1⟩}
V [(0, 0), (2, 7)] {⟨0, 1⟩, ⟨0, 2⟩}
E [(0, 1), (3, 5)] {⟨0, 1, 2⟩, ⟨0, 3⟩}

aThe first column identifies the amino acid whose codon frequency is
varied, the second column depicts contiguous oligo sets that contain
the appropriate Δ codon content multiple, and the third shows the
resulting designs that minimize coverage.

Figure 5. Three codon usage variation in GFP, amino acids T, V, and E. Four frequency values per codon of T and V, six frequency values for codon
of E. 96 total gene variants.

Table 2. GFP Design with 10 Overlapping Oligos, Varying 4
Codons (of 4 Different Amino Acids) at 4 Frequency Levels
Eacha

AA fragments utilized design

S [(0, 3), (8, 8)] {⟨0, 2⟩, ⟨0, 1⟩}
T [(1, 2), (7, 9)] {⟨0, 2⟩, ⟨0, 1⟩}
V [(0, 0), (2, 7)] {⟨0, 1⟩, ⟨0, 2⟩}
A [(3, 4), (7, 9)] {⟨0, 1⟩, ⟨0, 2⟩}

aThe first column identifies the amino acid whose codon frequency we
are varying, the second column depicts contiguous oligo sets that
contain the appropriate Δ codon content multiple, and the third shows
the resulting designs that minimize coverage.

Table 3. GFP Design Varying 8 Codons at 4 Frequency
Levels Each

AA fragments utilized design

P [(2, 3), (7, 8)] {⟨0, 2⟩, ⟨0, 1⟩}
T [(1, 2), (8, 9)] {⟨0, 2⟩, ⟨0, 1⟩}
V [(0, 2), (7, 9)] {⟨0, 2⟩, ⟨0, 1⟩}
E [(0, 0), (3, 5)] {⟨0, 1⟩, ⟨0, 2⟩}
D [(4, 5), (6, 9)] {⟨0, 1⟩, ⟨0, 2⟩}
G [(0, 2), (5, 6)] {⟨0, 2⟩, ⟨0, 1⟩}
Q [(3, 3), (7, 7)] {⟨0, 1⟩, ⟨0, 2⟩}
K [(3, 5), (6, 6)] {⟨0, 2⟩, ⟨0, 1⟩}

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244241

The coverage necessary to synthesize the optimized
combinatorial libraries produced by our method for the four
experiments are 29.84x, 23.95x, 12.81x, and 10.92x, respectively,
while the corresponding savings over the nonoptimized libraries
are 43.4-fold, 54.11-fold, 101.17-fold, and 23.44-fold.
Conclusions. We have developed a methodology and

implemented an algorithm to design protein coding gene
libraries that uniformly vary codon usage of multiple amino
acids. Our novel methods enable the cost-effective exploration
of the codon utilization design space and take advantage of
modern synthesis technologies to assemble DNA libraries for
use in high-throughput in vitro and in vivo experimentation.
Although primarily described as a codon usage exploration tool,
our methodology can be readily applied to vary other globally
acting coding and noncoding sequence features, such as
nucleotide composition, CG and CpG content, codon context
(such as codon pair and codon next base biases), and pattern
incorporation and/or elimination.
The algorithm has been implemented in python and all

computational experiments were performed on a laptop
machine with an i3 Intel processor. The code is available and
can be obtained from the authors.

■ METHODS
Algorithm Description. Our optimization method aims to

create combinatorial designs that cover the design space of a
protein coding gene library in a one-to-one manner, requiring

the synthesis of as few oligos as possible. The one-to-one
covering condition is necessary to guarantee that the resulting
library of gene variants from the assembly process will not be
heavily skewed toward any particular design.
For each codon of interest ci, we need to allocate a subset of

oligos that contain at least (ni − 1)Δi’s worth of occurrences of
ai to create the variation needed for the design space of ai. We
can then assign mini worth of ci’s to the ai’s found outside of the
allocated subset and then systematically vary the usage of ci in
Δi-sized steps in the region we have allocated to create variation
in the use of ci. Define an oligo interval to be a contiguous set of
oligos. The allocated region can be made of one large oligo
interval or multiple smaller oligo intervals. However, in the case
of multiple oligo intervals, we will need to examine which of the
possible allocations of the Δi’s to each oligo interval maintains a
one-to-one covering of the amino acid’s design space. Since we
are only interested in creating the Δi-sized steps of variation in
the allocated region, we can think of this space as

⟨ − ⟩n0, 1, ..., 1i (2)

where each integer represents the number of Δi’s.
Now, consider what happens when multiple oligo intervals

are utilized for a single codon’s variation. Each oligo interval
will be assigned multiple levels of ci usage in a way that each
level of variation is equally likely to occur under simultaneous
assembly. This is achieved by ensuring that the interior overlap
regions of the oligo interval are distinct between each version of
the interval but the outer overlap regions are the same in each
version. See Figure 3 for a diagram depicting two oligo
intervals, (1,2) and (5,8), each with two distinct versions. To
maintain a one-to-one covering of the design space, the size of
ai’s design space should be equal to the product of the number
of levels of variation in each oligo interval. Hence, the number
of options in each oligo interval must be a factorization of ni.
For example, if ni = 6, we could:
1. put all Δi’s into a single contiguous region with options ⟨0,

1, 2, 3, 4, 5⟩ or,
2. split them among two oligo intervals with one having

options ⟨0, 1, 2⟩ and the other having options ⟨0, 3⟩ or,
3. split them among two oligo intervals with one having

options ⟨0, 1⟩ and the other having options ⟨0, 2, 4⟩.
No other way of allocating the Δi’s to disjoint oligo intervals

will yield a one-to-one covering of the amino acid’s design
space. We will refer to each collection of options as a component
and a set of components that cover the design space by
choosing one option from each component as a design. We
showed above that {⟨0, 1, 2, 3, 4, 5⟩}, {⟨0, 1, 2⟩,⟨0, 3⟩}, and
{⟨0, 1⟩,⟨0, 2, 4⟩} are the possible designs for ni = 6.
With this terminology, allocating variation for a given design

is equivalent to assigning nonoverlapping oligo intervals to each
component of the design such that each oligo interval has
sufficient occurrences of ai for the corresponding component.
We will call such an assignment an oligo-design assignment.
Let us compare options 1 and 2 above. For the purpose of

minimizing coverage, option 2 is superior, because the total
number of oligos allocated to the design will be smaller than or
equal to the number of oligos allocated by option 1. This
follows the reasoning that, as long as the codon allocation in
option 1 spans multiple oligos, one should be able to split the
set at an appropriate point to yield an option 2 type allocation.
In addition, option 2 has the added benefit of lower average
coverage. In option 1, all allocated oligos have 6x coverage,
whereas in option 2 the oligos have either 2x or 3x coverage.

Table 4. Polio P1 Design with 37 Overlapping Oligos,
Varying 4 Codons at Frequency Levels (0, 0.2, 0.4, 0.6, 0.8,
1)

AA fragments utilized design

I [(0, 21), (22, 34)] {⟨0, 3⟩, ⟨0, 1, 2⟩}
N [(0, 11), (12, 34)] {⟨0, 1, 2⟩, ⟨0, 3⟩}
P [(1, 14), (15, 36)] {⟨0, 1, 2⟩, ⟨0, 3⟩}
T [(0, 22), (24, 36)] {⟨0, 1, 2⟩, ⟨0, 3⟩}

Table 5. Polio P1 Design Varying 4 Codons at Frequency
Levels (0.05, 0.23, 0.41, 0.59, 0.77, 0.95)

AA fragments utilized design

I [(0, 13), (15, 32)] {⟨0, 1, 2⟩, ⟨0, 3⟩}
N [(0, 10), (10, 30)] {⟨0, 1, 2⟩, ⟨0, 3⟩}
P [(4, 20), (22, 36)] {⟨0, 1, 2⟩, ⟨0, 3⟩}
T [(2, 22), (24, 36)] {⟨0, 1, 2⟩, ⟨0, 3⟩}

Table 6. Polio P1 Design Varying 4 Codons at Frequency
Levels (0.1, 0.26, 0.42, 0.58, 0.074, 0.9)

AA fragments utilized design

I [(11, 18), (20, 35)] {⟨0, 1, 2⟩, ⟨0, 3⟩}
N [(0, 15), (29, 34)] {⟨0, 2, 4⟩, ⟨0, 1⟩}
P [(9, 22), (25, 36)] {⟨0, 3⟩, ⟨0, 1, 2⟩}
T [(0, 11), (17, 31)] {⟨0, 1, 2⟩, ⟨0, 3⟩}

Table 7. Polio P1 Design Varying 4 Codons at Frequency
Levels (0.05, 0.35, 0.65, 0.95)

AA fragments utilized design

I [(2, 13), (15, 34)] {⟨0, 1⟩, ⟨0, 2⟩}
N [(0, 14), (23, 34)] {⟨0, 2⟩, ⟨0, 1⟩}
P [(4, 22), (25, 36)] {⟨0, 2⟩, ⟨0, 1⟩}
T [(0, 11), (13, 31)] {⟨0, 1⟩, ⟨0, 2⟩}

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244242

This observation is generalized and formalized at the end of the
section with a theorem.
Comparing options 2 and 3 above, we see that the difference

is characterized by whether the oligo interval with higher Δi
content gets assigned the larger (option 3) or smaller (option
2) factor of ni. We would expect the region with larger Δi
content to require an allocation of more oligos, so it would be
better if this region had smaller coverage. Unfortunately there
are examples where this is not true, so one has to consider all
possible assignments of Δi’s to regions corresponding to the
distinct prime factorizations of ni in order to identify the
optimal design.
Suppose ni = p1·, ..., ·pqi with pj prime for 1 ≤ j ≤ qi (but not

necessarily distinct). We now describe a way to formulate the
design with qi components corresponding to this factorization.
Let the component corresponding to p1 be ⟨0, 1, ..., p1 − 1⟩, the
second component be ⟨0, p1, ..., p1(p2 − 1)⟩, the third ⟨0, p1p2,
..., p1p2(p3 − 1)⟩, continuing up to the qith component ⟨0,
p1·...·pqi−1, ..., p1·...·pqi−1(pqi − 1)⟩. This construct is similar to
generating natural numbers using a hybrid system of
representation, where each digit uses a prime number of
values. The difference of the number of Δi’s between options in
a component we will call the order oi of the component, with o1
= 1 and oi = p1p2...·pi−1. As an example, the order of design ⟨0,
9, 18⟩ is 9.
To illustrate with an example, consider ni = 12. There are

three distinct prime factorizations, 2·2·3, 2·3·2, and 3·2·2, that
yield three different fully factored designs: {⟨0,1⟩,⟨0,2⟩,⟨0,4,8⟩},
{⟨0,1⟩,⟨0,2,4⟩,⟨0,6⟩} and {⟨0,1,2⟩,⟨0,3⟩,⟨0,6⟩} respectively. Any
of these might potentially produce an optimal total design for a
particular amino acid sequence.
In order to synthesize the full design space, we must choose a

oligo-design assignment for each amino acid of interest, ai. Each
oligo-design assignment will specify a coverage for each oligo of
the amino acid chain, and the total coverage needed for each
oligo will be the product of the coverages from the oligo-design
assignments. The objective of the assignment algorithm will be
to minimize the total number of oligos needed to synthesize the
design space, i.e. the sum of the total coverage of the individual
oligos.
With the framework set forth above our algorithm is

described as follows:
1. Divide the amino acid chain into oligos of size l specified

by the user, which we will label s1, s2, ..., sN.
2. For each interior and overlap region of the oligos count

the occurrences of ai and compute the corresponding number
of Δi’s (this value may be a noninteger) for each amino acid.
3. For each amino acid ai and each fully factored design for ni,

compute all minimal oligo intervals containing at least the
maximum number of Δi’s needed for each component of the
design. An oligo interval is considered minimal if it cannot be
contracted without dropping below the required number of
Δi’s. For example, for the design {⟨0, 1 ,2⟩, ⟨0, 3⟩} we need to
compute all minimal oligo intervals that contain at least 3Δi’s
worth of ai to create the ⟨0, 3⟩ component and we also need to
compute all minimal oligo intervals that contain at least 2Δi’s to
create the ⟨0, 1, 2⟩ component. Note that an ai is only
considered to be part of the oligo interval if it is in or between
the interior of oligo i and the interior of oligo j and not in the
outer overlap regions.
4. For each design type for ai, compute all oligo-design

assignments by taking all disjoint combinations of the minimal

oligo intervals found in step 3, one from each component type.
The notation for an oligo-design assignment will take the form
[(i1, j1), (i2, j2)] → {⟨comp1⟩, ⟨comp2⟩} to indicate an oligo-
design assignment that assigns the oligo interval (i1, j1) to the
component ⟨comp1⟩ and the oligo interval (i2, j2) to the
component ⟨comp2⟩.
5. Now that all oligo-design assignments are identified for

each amino acid of interest, we only need to find which yields
the smallest number of overall oligos to synthesize. This
reduces to scoring every possible combination of oligo-design
assignments, one taken from each amino acid’s list of oligo-
design assignments. The scoring can be computed by taking a
component-wise product of the coverage of each oligo for each
amino acid’s oligo-design assignment and summing the
resulting N-vector. As a simple example suppose we have N
= 5 and only two amino acids of interest, a1 and a2. Suppose the
oligo-design assignment for a1 is [(1, 2), (4, 4)] → {⟨0, 1, 2⟩,
⟨0, 3⟩} and the oligo-design assignment for a2 is [(2, 3)] →
{⟨0, 1, 2⟩}. Then the total number of oligos required to use
these two oligo-design assignments would be 3 + (3·3) + 3 + 2
+ 1 = 18 because s1 requires 3 variations from a1, s2 requires 3
variations from a1 and 3 variations from a2 hence 9 variations in
total, s3 requires 3 variations from a2, s4 requires 2 variations
from a1, and s5 is not part of either oligo-design assignment, so
only one copy of it needs to be synthesized. After scoring all
possible combinations of oligo-design assignments in this
manner, the combination with the lowest score will be used to
generate the optimal library.
6. Using the optimal combination of oligo-design assign-

ments, one from each amino acid, assign codons ci
appropriately, starting with designating a mini proportion of
the ai’s not in the oligo-design assignment, and then creating
the varied oligos based on the components of the optimal total
design. Some rounding might be required as the integer
multiples of Δi may not correspond to integer multiples of ai’s
depending on total number of occurrences of ai in the
sequence. Assign the remainder of the codons for ai according
to a user specified distribution (which typically follows either
original gene distribution or target host codon distribution, the
latter when optimizing heterologous gene expression).
7. Validate the uniqueness of all overlaps, swapping

synonymous codons between overlaps and regions outside of
the allocated subset for the corresponding amino acids, when
nonunique overlaps are found.
We conclude this subsection with the proof of the

aforementioned theorem:
Theorem 1. The number of oligos necessary to assemble a

library of single codon f requency gene variants is minimized when
the number of varied contiguous regions of oligos is equal to the
number of prime factors of ni and the number of options per
component is equal to the corresponding prime factor.
Proof. If a design has a component of order o that has a

number of options ∈ t that is not prime, then t = p1 × p2,
where ∈ p p,1 2 . This component can be decomposed into
two components by splitting the corresponding oligo interval
into two disjoint oligo intervals, each containing an appropriate
number of Δi’s that, based on the assignment procedure
described above, can be assembled to generate all codon
frequencies in the original component. To find the division
point for the two oligo intervals, we start at the left of the
original interval and proceed until we reach the codon that
completes the necessary Δ of the decomposition. If the last
codon of the first part of the split and the first codon of the

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244243

second half of the split are not in the same overlap, then we
need p1 coverage in the first section (for ⟨0, 1·o, ..., p1·o⟩) and p2
coverage in the second half (for ⟨0, p1·o, 2·p1·o, ..., (p2 −
1)·p1·o⟩). If there exists a shared overlap, then the oligos
immediately on either side of the overlap need p1·p2 coverage,
where the rest of the sections are structured as described above.
Since max(p1, p2) ≤ p1·p2, no oligo after the split will require
higher coverage than before the split.
Runtime Analysis. We will consider the size of the input to

be the length of the amino acid chain m, which is a multiple of
the total number of oligos N. Since the oligo size l and overlap
size v are bounded by constants (determined by the method
used), the only variable in our input is m, and consequently N.
The final loop of combining individual codon designs in our
algorithm is by far the part of largest computational complexity,
where the score is computed for every combination of oligo-
design assignments. Although the asymptotic complexity
increases exponentially for each new codon that is processed,
the total number of codons that can be varied is bounded by a
small constant. The number of oligo-design assignment
combinations is equal to

∏ ‐
=

a(no. of oligo design assignments for)
i

k

i
1

Suppose ni = p1·...·pqi where the p’s are prime numbers. There
are qi! ways to order the primes, resulting in up to qi! fully
factored designs for ai. Each design has qi components and each
component could have up to O(N) different minimal oligo
intervals. The algorithm proceeds by processing all disjoint
combinations of these minimal oligo intervals, taking one from
each component type. In the worst case, this step requires O(qi!
Nqi) time. If each amino acid has O(qi!N

qi) oligo-design
assignments, then the number of oligo-design assignment
combinations is O(Nq1+···+qk(∏i = 1

k qi!)). The final O(N) step of
computing the score for every oligo-design assignment
combination yields an upper bound of O(N1+q1+···+qk(∏i = 1

k

qi!)), which can be a large polynomial but only involves very
small constants and limited size input.
In practice, a python implementation of the algorithm,

processing inputs of medium size proteins and generating
designs varying 8 codons at 4 frequency levels each, results in
computations taking in the order of a few minutes to complete
in moderate hardware (laptop computer with Intel i3
processor). The space complexity of the algorithm is linear as
a function of the input size.

■ AUTHOR INFORMATION
Corresponding Author
* E-mail: dimitris@cs.miami.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their
comments and suggestions, which were helpful in improving
the manuscript.

■ REFERENCES
(1) Bugl, H., Danner, J. P., Molinari, R. J., Mulligan, J. T., Park, H. O.,
Reichert, B., Roth, D. A., Wagner, R., Budowle, B., Scripp, R. M.,
Smith, J. A., Steele, S. J., Church, G., and Endy, D. (2007) Nat.
Biotechnol. 25, 627−9.

(2) Czar, M. J., Anderson, J. C., Bader, J. S., and Peccoud, J. (2009)
Trends Biotechno.l 27, 63−72.
(3) Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X., and
Church, G. (2004) Nature 432, 1050−4.
(4) Welch, M., Govindarajan, S., Ness, J. E., Villalobos, A., Gurney,
A., Minshull, J., and Gustafsson, C. (2009) PLoS One 4, No. e7002.
(5) Kudla, G., Murray, A. W., Tollervey, D., and Plotkin, J. B. (2009)
Science 324, 255−8.
(6) Supek, F., and Muc, T. (2010) Genetics 185, 1129−34.
(7) Plotkin, J. B., and Kudla, G. (2011) Nat. Rev. Genet. 12, 32−42.
(8) Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M., and
Heyneker, H. L. (1995) Gene 164, 49−53.
(9) Cello, J., Paul, A. V., and Wimmer, E. (2002) Science 297, 1016−
8.
(10) Smith, H. O., Hutchison, r., C. A., Pfannkoch, C., and Venter, J.
C. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 15440−5.
(11) Gao, X., Yo, P., Keith, A., Ragan, T. J., and Harris, T. K. (2003)
Nucleic Acids Res. 31, e143.
(12) Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C.,
Hutchison, r., C. A., and Smith, H. O. (2009) Nat. Methods 6, 343−5.
(13) Gibson, D. G., Smith, H. O., Hutchison, r., C. A., Venter, J. C.,
and Merryman, C. (2010) Nat. Methods 7, 901−3.
(14) Gibson, D. G., et al. (2008) Science 319, 1215−20.
(15) Ramon, A., and Smith, H. O. (2011) Biotechnol. Lett. 33, 549−
55.
(16) Beck, M., and Robins, S. (2006) Computing the Continuous
Discretely, pp 3−23, Springer, New York.
(17) Mueller, S., Papamichail, D., Coleman, J. R., Skiena, S., and
Wimmer, E. (2006) J. Virol. 80, 9687−96.
(18) Coleman, J. R., Papamichail, D., Skiena, S., Futcher, B.,
Wimmer, E., and Mueller, S. (2008) Science 320, 1784−7.
(19) Li, G. W., Oh, E., and Weissman, J. S. (2012) Nature 484, 538−
41.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300086d | ACS Synth. Biol. 2013, 2, 237−244244

mailto:dimitris@cs.miami.edu

